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Abstract: Two design criteria are introduced to improve the power of the

CONSTRUCTION OF OPTIMAL DESIGNS TO INCREASE THE POWER

OF THE MULTIRESPONSE LACK OF FIT TEST

M. COORAY WIJESINHA and ANDRE' 1. KHURI

Department of Statistics
University of Florida
Gainesville, Florida 32611

U.S.A.

multivariate lack of fit test for a linear multiresponse model. These
criteria are extensions of the A, and A,-optimality criteria discussed by
Jones and Mitchell (1978) for the single-response case. A procedure is
presented for the generation of an optimal design based on the Ay-

criterion.
AMS Subject Classification: Primary 62K05; Secondary 62F03.

Key words and phrases: Multiresponse design; Al—optimality; Az-optimality;

Multivariate lack of fit test.

1. Introduction

Detection of model inadequacy is an important consideration in the

modeling of a multiresponse function. Khuri (1985) developed a multivariate

test for lack of fit for a linear multiresponse model. The test provides a




comprehensive assessment of the adequacy of all the single-response functions
associated with the multiresponse model. He also gave a procedure for
determining which responses are responsible for lack of fit when the lack of
fit test is significant.

In Section 2 we introduce some notation and briefly discuss Khuri's
(1985) lack of fit test. In Section 3 we develop two design criteria, Al and
Az-optimality, to increase the power of this test. In Section 4 an iterativa .
procedure developed by Silvey (1980) is used to obtain Az-optimal designs.

Numerical examples are presented in Section 5.

¢ 8 .
g o

2. The Multiresponse Lack of Fit Test

2.1 Notation

Let N be the total number of experimental runs and r be the number of

i

responses. We assume that each response depends on all or some of k

e "o W v

controllable variables denoted by Kj2Xgseee, Xy The fitted ith response model

is represented as

Py v

Eg(Y) = X8, 1 = 1,2,..0,1, (1)

where Xi is an Nx1 vector of observations on the ith response, Ea(Yj) denotes

the expected value of Xi under the fitted model, Xi is an pri matrix of rank

= X

Py of known functions of the settings of the controllable variables, and B is f
¢

. "4

a p;xl vector of unknown parameters (i=1,2,...,r). S
We suppose that the model for the true ith response mean (i=1,2,...,r) is 4
Y,

. .

of the form i :
TN

Et(xi) = Xi8; * 2y, 1=1,2,...,r, (2) ST

where Et(xi) denotes the expected value of Zi under the true model, Ei is an .—?

NXqi matrix of known functions of the settings of the controllable'variables,
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and Y, is a vector of unknown parameters. If the fitted model (1) is correct, g
then Y, will be equal to the zero vector. :5
The models given in (1) and (2) can be expressed as ?
E.(Y) = XB (3) N
E,(1) = XB + 2L, (4) 3
where ¥ = [¥,:¥,:.0.:X ), X = [X;:%5:...:X. ], 2 = [51:52:...:§r], x
B = diag(gl,gz,...,gr), and T = diag(ll,xz,...,lr]. The matrices Y, X, Z, B, 5
and [ are of orders Nxr, Nxp, Nxq, pxr, and qxr, respectively, where :i
p = 121 Py 4 = 121 q;, and X is of rank p (<p). The rows of Y are t&
independent observations from multivariate normal populations with a common A
nonsingular variance-covariance matrix I of order rxr. Under the crue model, .i
Y has a mean given by (4) and a variance—covariance matrix ZN 8 E' &
For the development of the lack of fit test we assume that replicated .:
observations are available on all r responses at some points in the ;
experimental region. Without loss of generality, it will be assumed that such -
replicated observations are obtained at each of the first n design points, k
whgre 1 < n < N. The number of repeated observations at the ith design point :
is denoted by vy (vi > 2,1=1,2,...,n) and the total number of repeated 4
n
observations is v = 151 v, - k
2.2 Khuri's (1985) Lack of Fit Test E_

Let X, denote the matrix which consists of the columns of X that

correspond to all distinct terms in the r fitted models given in (1). The

‘ 'l -' ‘l 'I ‘- _" Ny

columns of 50 span the column space of X. We, therefore, consider that 50 is

LRI »

of full column rank equal to p, the rank of X. Khuri (1985) developed a

multivariate lack of fit test for the multiresponse model (3) using
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-1 . . . -1
emax(glgz ), the maximum eigenvalue of the matrix GG, °, as a test
statistic, where L
-, - —l .
& 7 ¥y K8 - K1Y
(5)
Sy = XKY -

In the above equations, K = diag(K »K ,...,K 0) is of order NxN with ¢

being a zero matrix of order (N-v)x(N-v) and K; = 1 - (1/v,)J , where I 1is
~Vy i ~vy ~vi

the identity matrix of order v;Xxv, and lvi is the matrix of ones of order

vy XV (i=1,2,...,n). Three other test statistics can also be employed to test

lack of fit; they are: (1) Wilks's likelihood ratio, 'G I/lc + Gz'

Pillai's trace, tr [gl(gl+ 92) 1]; and (3) Hotelling-Lawley's trace,

tr (ngz—l), where ‘ l and tr denote the determinant and the trace of a

matrix, respectively.

3. Development of Design Criteria

It is known that G, has the central Wishart distribution with
n

Vpg = iEl(vi- 1) degrees of freedom; G, is independent of G, and has the

noncentral Wishart distribution with Vip = (N—p—vPE) degrees of freedom and a

noncentrality parameter matrix given by
P d —1 -
( ) lzr. (6)

The power of the lack of fit test, based upon any of the four multi-

varlate test statistics mentioned earlier, is a monotone luncreasing function

of the eigenvalues of § (see Roy et al. 1971, p. 68). Therefore, the power of

-
r.
.

this test can be increased by increasing the trace of Q. However, the choice
of the design which maximizes the trace of { depends on the matrices [ and [

which are unknown. Thus, we are faced with the problem of finding an
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expression independent of [ and [ which, when maximized, results in an
increase in the trace of §. This expression is found as follows: It is easy

to show that
—1 sy s - —1’
er(R) > epyn(X7) er[L°Z°{Ly X (XX)  Xgh2r], 7

where e ;. denotes the smallest eigenvalue of the matrix inside parentheses.

Inequality (7) can be rewritten as (see the Appendix)

~1, . .
tr(Q) > e . (L ")y“L(L 8A)L"Y, (8)
where
Y7 = [II: IE”":X;]’ (9
8= L%ty Kz (0)
L= diag(g"gé,...,l}';). (11)

In (10), Zy is a matrix of order NXpl(pl<q) -whose columns form a basis for

the column space of Z = [%l:§2:"':£r]' Thus,

Z, =12

Z, ~OEi , i=1,2,...,r, (12)

where ﬂi is matrix of order pyxq;.

Since e (g’l) is a constant, the maximization of the quantity

min
M= yL (L e LY S EY
will result in an increase in the trace of Q. Still, however, the choice of
design to maximize A depends oﬁ Y which is unknown. In order to overcome this
problem we apply the maximin method proposed by Atkinson and Fedorov (1975)
and used by Jones and Mitchell (1978) in the single-response case. The
maximin method consists of choosing a design which maximizes Al, the minimum

of A with respect to Y over a specified region m in the Y-space. The

specification of the region 7m depends on a quantity 1 considered a; a measure
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of the inadequacy of the fitted model and is defined as follows: Suppose the
uth rows of X; and Zi (1=1,2,...,r; u=1,2,...,N) in (2) can be represented as
§£(§u) and gi(iu)’ respectively, then the fitted and true response functions

associated with (1) and (2) are £I(5)§i and £I(§)§i + 5;(5)11 (i =1,2,...,r),

respectively. We express T as 1 = 1’11, where

T = diag(T,T,,..-,T ) (14)

i i i -1 1 i .
with Ii = Hop 221(311) Bl and the Ekl(k, 2 = 1,2) are the region moment

matrices defined by Eil = sf 51(5)£i(5)d§’ E§2= sf £i(§)gz(5)d§,
X X

» i » -
k21 = Sf By (O (dx, and ), = Sf g (OGO, where sTI= [ dx and x
X X X
denotes the experimental region. This is a multiresponse extension of the

expression for T given by Jones and Mitchell (1978). It is a measure of the
inadequacy of the fitted models given in (1) and is positive whenever the

fitted model is inadequate, otherwise, it is equal to zero.

If the fitted model is inadequate, then t » § for some constant § > 0. We

~ A

define # = {liY'TY > 6}. The first design criterion is to maximize A, where

M= f (YL 8 A L7y (15)

This is a multiresponse extension of the Al—optimality criterion proposed by
Jones and Mitchell (1978). As in Jones and Mitchell (1978), A can be
expressed as
_1 .
Ay = 8 eqin{T L(L, @ ML) (16)

A design which maximizes emin{T L(I_ © Q)L’} is called a Al—optimal

~o ~~r

.

design. Note that there are situations in which emin{z—lL(Ir ® A)L‘} is equal

L]
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to zero for any choice of design. This occurs, for example, when r(N-p) < g,
r

igl ay is the number of columns

where p is the number of columns °f.K0 and q =
in Z in (4), or the number of rows of the matrix L in (l1). In this case the
rank of the qxq matrix Z-lk(lr (] é)k’ is less than or equal to r(N~p) which is
less than q. This matrix is, therefore, singular. Thus, A1~opcimal designs

can only be obtained under certain conditions. This leads us to propose a

second design criterion which can be applied in more general situations.

3.2 Az-Optimality

Our second design criterion is to maximize AZ' the average of A (instead
of the minimum of A) over the contour 1 = §, i.e., we propose to select a

design which maximizes

8 A)Ly dG/ [ dG, , (17)

where dG is the differential of the area on the surface of the ellipsoid
LI {Izy’TY = 6}. Using an identity stated in Jones and Mitchell (1978, p.

~ A

544) we have that
A, = q 16 AZ, where AZ = tr{T 'L(1_® A)L‘) (18)
2 2° 2 ~ SRy DRI

A design which maximizes A,, or Ai, is called a A,-optimal (Ai—optimal)
design. Since q and § are constants it is clear that Az—opcimal designs and

Ai-optimal designs are equivalent. We note that the A2~optimality criterion

amounts to maximizing the sum of the eigenvalues of T lL(I ® A)L”; hence, it

~ ~

can be applied even when this matrix has a zero eigenvalue.
If the number of design points, N, is fixed beforehand, a Az—optimal

design can be obtained by maximizing Aé with respect to the Nk design setting

K auarard

¥ )

(coordinates of the N design points). However, this may lead to computationa!l

difficulties especially for large values of N or k. Therefore, an iterative

m.

W e R K S
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procedure by which design points can be chosen one at a time would be quite
desirable. In the next section we develop such a procedure by using single-

response optimal design theory.

4. The Generation of A-Optimal Designs

4,1 Design Theory

Consider the single~response model

~ A~

E(y,) = h"(x)8, (19)

where Y denotes the response value at a point g = (xl,xz,...,xk)', the
element; of the mxl vector h”(x) are functions of Xp Ko ,ene,X) defined over
some experimental region ¥, a compact subset of the k-dimensional Euclidean
space, and 8 is a vector of unknown parameters. We assume that Var(yx) = g2,
Cov(yx Y ) = 0 for x, X0 %y in x(§1¢ 52). Let H be the set of all design

~1 ~2
measures defined on x. Then the information matrix g(c), teH , is defined as

M(z) = [ h(x)h”(x)z(dx). (20)
X

The family of matrices,M = {g(c):ceH}, is convex (Silvey 1980, p. 16). By
Carathéodory's Theorem, for any design measure 7, the matrix E(C) can be

represented in the form

S
M(g) = I A h(x h7(x ), (z1)

1

where X, EX (u=1,2,...,8), s ¢<m” = [m(m+1)/2] + 1, and O < Xu < 1 with

s
uglku= 1 (see Silvey 1980, pp. 15-16). Thus, for a given M(z)eM and
m’
Aell=0y.y = - such that 0 < X < 1 and A =
ReU={ain = O 2,002 ) u WA 1
there exists a point w* = (A’,gi,ié,...,zé,) in Ux Xm’ that is associated

with M(z). Note that in A, Xu =0 for s Cu < m°. If ¢ is a real-valued

function bounded from above onM , then a design measure r* is said to be

eiensesniuSIR oo dhndoniitetoninme SRS St G
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¢-optimal if

${M(z*)] = sup ¢[M(Z)]. (22
LeH

Silvey (1980, ch. 4) presented an iterative procedure to obtain ¢-optimal
designs. The basic idea used in this procedure (Silvey 1980, p. 29) is as

follows: Suppose DN = {51’52”'°’§N} represents an N-point discrete design

and N is the design measure obtained by attaching the mass Au = %

(u=1,2,...,N) to each design point in Dy. Start with an initial Ng-point
destgn such that ¢[§(CN )] > - «. Once DN’ hence Ty N > NO, has been

0
determined, choose the design point AN+ 1 such that

Folitley)s ROy h Gy D) = gup Fol(ey) hGon o}, (23)
where for gl,ﬁz inM, F¢(§1,§2) is the Frechet derivative of ¢ at ﬁl in the
direction of nz and is defined as

F o (M).M4)) = i$+(l/e)[¢{(l—e)§l+ eM,} - o] (24)

The procedure is stopped when ggg F¢{M(CN')’ E(i)h‘(i)} is less than some
small positive preset value for some N* > NO. This stopping rule is based on

the following lemma (Silvey 1980, p. 22):

Lemma 1. Let ¢ be concave on M and differentiable onM = {g(;): M(z)e M

and ¢[M(g)] > - m}. Suppose a ¢-optimal measure exists. Then g* is

¢~optimal if and only if
* - =
sup F¢{§(c ), h(x)h"(x)} = 0. (25)

The sequence of design measures {cN} defined in the iterative procedure

obeys the recursive formula

Cyey = (oo, + agtlxy, ), (26)

N+1
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where ay = 1/(N+1) and C(EN+1) denotes the design measure which assigns 1 to
the point xy.,. Silvey (1980, pp. 35-36) shows that for such {aN} the
procedure converges.

let us now consider the multiresponse model given in (3) and the Ai—
optimality criterion defined in Section 3.2. We shall apply Silvey's (1980)
procedure to construct Ai-optimal designs. For this purpose let us consider
the matrices BO and ZO’ which are of orders Nxp and NXDI and appear in (5) and
(12), respectively. We introduce a single-response model of the form given in
(19) with h*(x) = [a”(x): b“(x)], where g’(g) and b“(x) are vectors of
dimensions p and Py that represent a row of KO and a2 corresponding row of ZO’
respectively, evaluated at a point x. The corresponding information matrix
for a discrete N-point design measure Ty can be written as

Mex(an) Mg (2y)

M(zy) = , (27)

Moy (oy)  Mp{ey)

where gxx(;N) = X5 Xo/Ns MXZ(; ) = X5 Zy/N, MZX(C ) = Z{ X,/N, and

ﬁZZ(CN) = %0 QO/N. The corresponding expression for A2 in (18) can now be

written as a function of E(CN) of the form
, -1 -
A (e )] = erlTL{z e A(g)iLe], (28)

where A(; ) = N[MZZ(C ) ~ZX( ) XX(C )~XZ( N)]. In general, if g is any
design measure defined on a compact subset, ¥, of the k-dimensional Euclidean
space, then an extension of the AE function in (28) when gxx(g) is nonsingular

is

AZ(M(Z)] = tr[g’lg{gr 8 ACZ)IL"], (29)

where A(T) = M, (2) = M, (M (DM () and M. (2), Mo (2), M, (8), and

Mzz(c) provide a partitioning of M(z) in (20) analogous to that of E(CN) in

. - 7 . 3 L e e el I
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(27).
If H is the set of all design measures on X and M is the set {E(C):CEH},
then a real-valued function ¢ can be defined on M as

AE[E(E)] if Qxx(c) is nonsingular
o[M(Z)] = (30)

- otherwise.
In this respect, the problem of finding a Aé—optimal design for a
multiresponse model is equivalent to finding a ¢-optimal design for the
single-response model (19) with h”(x) = [a”(x): b"(x)] as was seen earlier.

The function ¢ defined in (30) can be shown to satisfy conditions (i), (ii),

mm. o e
P VSR IIN

and (iii) described in Theorem 1. The proof of this theorem is given in

. "
-‘

Wijesinha and Khuri (1985). B

‘s

Theorem 1. Let M~ = {E(C): ﬁ(;)e&l and gxx(g) is nonsingular}. If Aé[g(;)]

is defined as in (29), then

R e
PR L.

(i) a A;-optimal measure exists.
2

(i1) AJ is concave on M.

»

(iii) A; 1s differentiable on M.

If FAi denotes the Fr;chet derivative of Aé, then from Lemma 1 and
Theorem 1 we may conclude that a design measure z* is Ai-optimal if and only

if

up F,-{M(z%), h(0h"(x)} = 0,
2

by

where E’(i) = [3’(5): E’(i)]. This result will be used to construct a Ai—
optimal design in an iterative manner, just like in Silvey's (1980) procedure
described in Section 4.1. First, we need to obtain an explicit expression for

FAE. This will be developed in the next theorem.
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Theorem 2. If H is the set of all design measures on ¥, then for ze H and

xeX we have
~

Fp-{M(2), h(xOh" ()} = tr[z_lk{lr ® [b(x) - ¥(x,8)]1[b"(x) - v’(x,z)]}L"]
2

Pl ol ]

)

- A1, (31)
2 where y(x,2) = My (M (Dalx) and h(x) = [a"(0):b"(x)1".

Proof. For simplicity we shall write M and h instead of M(g) and h(x). By
definition,

F,.(, hh") = lim (1/e){A5[H) - As[MI},
2 e+0

where E = (l-e)g + ehh’. Recall that

fiu] = -1 _ -1 .
Ayl = ex[TUL{L @ (M- My, L]

Therefore,

- "1 ’ P
: F,-(M, hh*) = lim er{T "L(L @ E)L°}, (32)
n 2 e+0
. where
E = (e {ly,m Ropteellys — Hpp* Mty b (33)
and
N %xx EXZ
E = ~e ”~o o
Max M2z

But from Dykstra (1971), for a nonsingular matrix A we have the following

identity:

. 1
Thus, if we let A = (l—c)ﬂxx and X" c/za, we get

o1 -1
X M. = {(l—e)gxx+ caa ]

~XX
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-1

;-1 -1
w lee/(-e)" M, aay

-1

where c—l =1+ [e/(1l-¢)] g‘u;; a. It follows that

~1 -1.-1 -y oyl ) B
Moy = (1-¢€) Mex ™ {e/t(1-€)}P, where t =1 - € + €a Myyd and P = M . aa’M ..

From (33) we obtain

-1 VIS R
E = Mpz* Moglladlxzt B 7 Madllxx 207 7 P2y

-1

- {e/(1-e)}paM,, ab” + {Q1-e)/t]}m, PM

~ZX~~XZ
+ (e/t), Pab” + (e/t)ba’BM . + {e°/{(1-e)c]}baPab”. (36)

From (32) and (34) we conclude that

FA,{;;!(C), h(x)h"(x)}
2
= tr [g—lk{gr ® [b(x) - v(x,0)1(b"(x) - v (x,0)]}L"] - A M(D) T,

-1
where y(x,2) = M, (DM, ()alx).

4.2 An Iterative Procedure to Obtain a Ai—Optimal Design

Let h(x) = [a”(x):b*(x)]* and let E(CN), N > 1, be defined as in (27).
The main steps of the iterative procedure for constructing a Aé-optimal design
are:

1. Start with an initial design DNO (consisting of No points) for which

EXX(CNO) is nonsingular.

2. Obtain the design point AN +1

j+1 20 which sup FAE{M(cNO), hGOR"(x)} is

attained.

3. Obtain DNO+1 (hence CN0+1) by augmenting DNO with 5N0+l' Recall that
CN0+1 is the désign measure obtained by assigning probability 1/(No+l) to

each design point in DNO+1.
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sup Foo{u(zy), RN (0} < e, (35)
~ 2

.

for some N > N, and e, where € is a small positive number chosen a priori.

5. Numerical Examples

Example 1. One of the main concerns in industry is the determination of
conditions on the controllable variables which lead to better yields and lower
costs. In a paper by Lind et al. (1960), the authors discussed a case study of
such a problem. They applied response surface techniques to a typical

chemical processing operation. Three controllable variables were considered;

Y

they were X)1,Xg, and X4 which represent, respectively, the proportions of two

complexing agents, and the extraction pH level. The response variables were
Y| = percentage yield, y, = cost of materials (dollars per one kilogram of
product). The controllable variables were coded so that -1<x <1 (i=1,2,3).

The fitted models are given below

3
Ea(yi) = eio + I.B,.x, + 8

3818157 * BpaxXp v 8

+ B i=1],2.

113%1%3 7 Py23%2%y
If these models are inadequate, then it 1is necessary that the design be chosen
so that the experimenter can quickly and efficiently detect the presence of
lack of fit. 1In this case the design can be augmented with additional points
to allow the fitting of models with higher-order terms. If, however, no
significant lack of fit is detected, then the models can be used to determine
conditions on X12X9s and Xq that lead to high yield-response values and low
cost-response values. Let us consider that the true model for each response

is of the second degree with all pure quadratic terms, i.e., x%, x%, and x§

(this model was reported to be adequate according to the study by Lind et al.,

LR
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The iterative procedure described in Section 4.2 was carried out using
two initial designs given in Tables 1 and 2. The augmented design points, the

§%§ FA’ values, and the A} values are given in Tables 3 and 4. The figures

2
indicaie that the procedure has been successful in reducing the FAE values to
a level very close to zero. A steady increase in the values of Aé is also
seen. It is quite clear from these results that the choice of the initial
design has a significant effect on the locaticvn of the new design points as
well as on the rate of convergence of the procedure.
Example 2. 1In this example we consider a multiresponse experiment with

three responses, Yys Y2 Y3 and three controllable variables, X1 Xg, X3,

coded so that -1 < X, <1 (i=1,2,3) . The fitted models are

E (5)) = Byg * By %) + BigXg * B 13%) %,

3
= 2 2
E () = By +3E1By5%; + Byya¥ X3 ¥ Byy X] + By3axy

3
= + .
The true models are considered to be

- 2 2
E(y)) = Big * By %) * BygXg + Bl gX Xg + By X] + B13q%3

3
= 2 2 2
Ee(yp) = Boo*iE1Ba%5%Ba13% 1% 80111 B233%5 %801 2% X2 8223 %2 %318 200%)
3 2 2 2
E (y3) = Bygtyk Ba X 4By 5% Xy ¥8y) 3% Xg#Bayq X Xg¥By ) X[ #8559 X7 83333

The initial design for this example is given in Table 5 and the augmented
design points are given in Table 6. As in Example 1, we can clearly see that
the proposed procedure has been effective in reducing the value

of ggg FAE[Q(CN_I),E(ﬁ)b’(E)] to a level arbitrarily close to zero.

-~15-
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Aggendix

In this appendix we prove the inequality

—l - »
er(@) > e, (E DYTL(I OA)L7Y, (A.1)

where

- ’ - P - », -1 »

X Lgexgie gl A= 25 (L% (XXg) Xg) Zo, and
L = diag(H{,H3,...,H7).

Proof

sy - —l;
e (D2 (LR Kate) KoL)

4

]
its
\

\

| GEA B

[x B{: x5 Byee--xp BP1CL @ W) [y] Byayg Hy:eoooxp B2DS,

=1 KI 8 A LY.
Inequality (A.1) follows from the above equality and inequality (7).
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Table 1. Initial Design 1 (Example 1).

X1 x2 x3
1 1 1
1 1 -1
1 -1 1
1 -1 -1

-1 1 1

-1 1 -1

-1 -1 1

-1 -1 -1

Table 2. 1Initial Design 2 (Example 1).

X X2 %3
-1.0 -0.5 -0.5
0.8 0.6 ~0.7
0.4 -0.3 0.9
-0.2 0.8 1.0
0.5 -1.0 1.0
-1.0 0.7 ~1.0
-1.0 -1.0 1.0

. ~
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Table 3. The Augmented Design Points using Initial Design 1 (Example 1).

N Xy A1 FA§ Mgy )s R(XIR'(x)] Ay Mgy )]
9 (-0.019,-0(.008,-0.003) 67.4805 0.0000
10 ( 0.008,-0.001,-0.001) 4°.,6655 6.6644
11 ( 0.006, 0.006, 0.011) 32.4011 10.7976
12 (-0.002, 0.002,-0.009) 22.3158 13.3860
13 ( 0.007, 0.003, 0.016) 14.9971 14.9977
14  (-0.004, 0.011,-0.009) 9.5850 15.9737
15 ( 0.003, 0.012, 0.004) 5.5106 16.5279
16  (-0.001, 0.000,-0.005) 2.4048 16.7973

17 ( 0.000,-0.002, 0.000) 0.0050 16.8726

R L
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Table 4. The Augmented Design Points Using Initial Design 2 (Example 1).

N X\ 257 Fag M) BB A; Mgy )]
8 (-1.000,-1.000,~1.000) 92.7738 0.0000
( 0.880,-1.000, 0.280) 43.3311 2.1245

10 (-1.000, 0.891, 0.382) 40.6232 3.5374
11 (-0.241,-0.182,-0.089) 23,1349 4,.7762
12 ( 0.902, 0.991, 0.881) 41,9346 6.6435
13 (-0.140,-0.079,-0.040) 17.9048 7.2794
14 (-0.139, 0.881,-1.000) 20.2792 8.4975
15 (-0.135,-0.060,-0.041) 12.8134 9.0801
16 ( 0.878,-0.223,-1.000) 14.6284 9.8342
17 (-0.120,-0.061,-0.059) 9.5272 10.1154
18 (-0.124,-0.063,-0.058) 6.7563 10.6228
19 ( 0.879, 0.900,-0.100) 11.9147 10.9438
20 (-0.161,-1.000,-0.079) 5.7707 11.1739
21 (-1.000,-0.019, 0.025) 5.0655 11.3401
22 (-0.120,-0.060,-1.000) 4,0475 11.4226
23  ( 0.920,-1.000, 0.890) 11.0403 11.5733
24 ( 0.883,-1.000,-1.000) 7.9772 11.5312
25 ( 0.043,-0.123,-0.043) 5.0573 11.5236
26 ( 0.045,~0.124,-0.045) 3.5450 11.6986
27 (-1.000, 0.891,-1.000) 7.0004 11.8117
28 (-1.000,-1.000, 0.880) 10.2624 11.8081
29 (-0.060,-0.120,~0.047) 4,1023 11.8672
30 (-0.100,-1.000,~-0.040) 2.9559 11.9892
31 (-0.059,-0.119,~0.039) 2.4101 12,0441
32 ( 0.001,-0.009,~-0.011) 1.0677 12.1065
33 (-0.003,-0.004,~0.000) 0.0156 12.1256
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:‘, Table 5. The Initial Design for Example 2.

: X1 2 *3

0.5 -0.6 0.3
1.0 1.0 -1.0

- 0.8 0.7 -1.0
110 0.3 -1.0
0.4 0.6 0.7
0.5 -0.8 0.9

1.0 -1.0 0.4

.
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Table 6. The Augmented Design Points for Example 2.
N Xy sep FAélg(cN~1),g(5)h‘(§)] Ay MGy ()]

8 (~-1.000,-1.000,-1.000) 311006.8974 -0.0000
9 (-1.000, 0.880, 0.901) 496.1313 0.6116
10 (-1.000, 1.000,-1.000) 239.7514 0.8424
11 ( 0.620,-1.000,~-1.000) 101.2637 4.0733
12 (-1.000,-1.000, 1.000) 132.6938 7.4027
13 ( 1.000, 0.995, 1.000) 118.0638 8.5210
14 (-1.000,-1.000,-0.120) 74,6300 8.3795
15 ( 1.000,-1.000,~1.000) 45.3371 10.4716
16 (-1.000, 0.880, 1.000) 24.9710 11.6581
17 (-1.000,-1.000, 0.995) 21.1408 12.0597
18 (-1.000, 0.880,-1.000) 10.7567 12.1594
19 (-1.000,-1.000,~1.000) 8.2219 12.1818
20 ( 1.000,-1.000, 0.89%4) 38.5043 12.1063
21 ( 1.000, 1.000, 1.000) 27.2943 12.7122
22 ( 1.000,-1.000,~1.000) 13.3531 13.1270
23 _(-1.000, 0.880, 1.000) 10.5090 13.2994
24 (-0.940,-1.000, 0.899) 5.3225 13.4066
25 ( 1.000, 1.000,-1.000) 23.0393 13.3929
26 (-1.000, 0.898,~1.000) 7.5010 13.8408
27 (-1.000,-1.000,~-1.000) 5.2012 13.8770
28 ( 1.000,-1.000,-1.000) 10.8382 13.8495
29 ( 1.000,-1.000, 1.000) 25.5676 14.0416
30 ( 1.000, 1.000, 1.000) 15.4512 14.2208
31 (-1.000, 0.894, 1.000) 7.0110 14.3827
32 (-1.000,-1.000, 0.880) 5.9191 14.4395
33 (-1.000,-1.000, 1.000) 1.5645 14.4925
34 ( 1.000, 1.000,-1.000) 16.9589 14.3978
35 (-1.000, 1.000,-1.000) 10.7206 14.6391
36 (-1.000,-1.000,~-1.000) 4.4119 14,7352
37 ( 0.910,-1.000,~1.000) 3.8760 14.7178
38 ( 1.000,-1.000, 1.000) 16.9927 14.7342
39 ( 1.000, 1.000, 1.000) 11.9193 14.8585
40 ( 1.000, 1.000, 1.000) 1.8782 14,9712
41 (-1.000,-1.000,-1.000) 1.0772 14.9461
42 ( 1.000,-1.000,-1.000) .01425 14.9103
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